WifiEagle Single- and Dual-Band 802.11 Channel Analyzers

Quantify And Predict Throughput Performance Of Each 802.11 Channel

WiFiEagle represents a new and innovative series of PC-based, WiFi diagnostic tools used for installing, troubleshooting and monitoring 802.11 wireless networks. These tools are unique in their use of 802.11 devices for performing channel analysis.  Employing patent-pending IMMI (Indirect Measurement of Microwave Interference) technology, WifiEagle analyzers provide unprecedented visibility into the performance of a wireless network.  The information collected and displayed by WiFiEagle helps to simplify troubleshooting of interference-related problems and predicts throughput performance for each 802.11 channel. 

WifiEagle employs IMMI technology with 802.11 hardware to perform data acquisition — hence, the results truly reflect how RF interference in the local environment affects throughput performance of 802.11 channels, which is not possible using an RF spectrum analyzer.  IMMI technology and WifiEagle are the only solution on the market today that allows both experts and non-experts to quantify and predict throughput performance of each 802.11 channel.  By virtue of the fact an 802.11 channel analyzer views the RF world through the eyes of an 802.11 device, then the diagnostic information it provides more closely mirrors the performance you can expect from your own 802.11 client adapters.  This makes it easier to troubleshoot and fix problems and allows you to make better-informed decisions regarding how best to configure your wireless network for optimal throughput performance.  IMMI technology and WifiEagle represent a true breakthrough in the area of WiFi diagnostics — not only because they predict throughput performance but also from a cost standpoint.

WifiEagle 2.4x and 5.x GHz Channel Analyzer

In addition to channel analysis, integrated in the application software is a full-featured, WiFi Scanner — also known as an 802.11 network discovery tool.  An 802.11 network discovery tool gathers information about nearby access points and displays the data using a variety of charts. The network discovery functionality that is integrated into WifiEagle is modeled after our popular NetSurveyor application. By combining channel performance analysis and 802.11 network discovery into one tool then you have the best of both worlds.  Each analyzer can be used to monitor wireless devices and RF interference that impact the performance, range and security of wireless networks. We have found the data they provide most useful during installation and troubleshooting of 802.11 wireless networks. When WifiEagle is installed on a laptop computer it provides mobile, site survey information that facilitates optimal configuration of 802.11 wireless networks, proper location of RF devices, and aids in identifying potential sources of interference.

IMMI Technology and WifiEagle Key Features:

  • Support for both 2.4x and 5.x GHz ISM bands
  • Compliant with IEEE 802.11 standards
  • Simple and easy-to-use graphical UI with multiple diagnostic views and charts
  • Built-in modules for performing both channel analysis and network discovery
  • Data recording and playback
  • PDF report generation
  • Low-cost — uses off-the-shelf 802.11 wireless devices, compared with expensive, proprietary wireless analyzers

WifiEagle May Be Used For 

  • Detect potential sources of RF interference that could affect an 802.11 wireless network
  • Determine whether or not the throughput performance of an 802.11 wireless can be improved by using a different 802.11 channel
  • Quantify the expected change in throughput performance that would result from using a different 802.11 channel
  • Optimally configure 802.11 wireless networks with the goal of improving throughput performance
  • As an aid in properly locating 802.11 wireless devices so as to maximize range and throughput and minimize interference from competing wireless devices

Currently there are two products included in the WifiEagle line of channel analyzers — WifiEagle 2.4x & 5.x GHz Dual-Band Channel Analyzer, and WifiEagle 2.4x GHz Single-Band Channel Analyzer.

WifiEagle-- DataSheet

The WifiEagle analyzer continuously scans and samples the throughput rate of 802.11 channels.  In the case of the 2.4x GHz single-band version of WifiEagle, this will include 802.11 b/g channels in the 2.4 GHz Industry, Scientific and Medical (ISM) unlicensed band.  In the case of the 2.4x & 5x GHz dual-band version of WifiEagle, this will include the 802.11 a channels in the 5.x GHz ISM unlicensed band, as well.

It is helpful to keep in mind that in the WiFi world 802.11 devices operate on 'channels', rather than a particular frequency (as in AM or FM radio). An 802.11 channel is a range of frequencies.  The diagram below shows that 802.11 b/g channels span 22 MHz. Furthermore, in 802.11 b/g the channels overlap. That is, adjacent channels are offset by 5 MHz and overlap by 17 MHz — more than 75% of their channel width. As a result, when a peak of RF interference from a 2.4 GHz cordless phone appears in the middle of channel 1 it will not only interfere with channel 1 but also the adjacent channels.

2.4GHz ISM Band

802.11a channels in the 5.x GHz ISM unlicensed band differ from their 802.11 b/g counterparts in a few ways — they are subdivided into UNII bands 1, 2 and 2 Extended, they do *not* overlap, and each channel spans 20 MHz, as depicted in the diagram below.

5.x GHz ISM Band

Example — Interpreting the Diagnostic Charts

diagnostic charts are easy to use and interpret, and to illustrate this we've chosen as an example to run the analyzer in the presence of an active 2.4 GHz cordless phone.  For all charts the results are presented for each channel in terms of % Maximal Throughput.  % Maximal Throughput is a measure of performance.  The 802.11 wireless adapter that was included with the WifiEagle package has a known, optimal performance throughput capability (measured in bytes / sec) that was calibrated and is subsequently used by the application as a reference.  The % Maximal Throughput values reported by WifiEagle are predictors of how well each channel can be expected to perform (relative to its optimal throughput capability) in the current RF environment.

WifiEagle Main Display

Referring to the figure above…

Channel Timecourse Chart (Arrow #1):
The Channel Timecourse view is useful for monitoring channels as a function of time. Each channel is represented by a different line — the x-axis is time and the y-axis is % Maximal Throughput. In this way one can clearly follow how RF interference affects different channels over time.  You can see that for channels 1 and 2 their % Maximal Throughput values began to drop the moment the phone is turned on. 

Channel Spectrogram Chart (Arrow #2):
Shows a similar result as the Channel Timecourse chart, but in 3-dimensions.  The Channel Spectrogram view is a 3D plot of 802.11 channels as a function of time. Each channel is represented by its own set of bar graphs — the Z-axis is time and the Y-axis is % Maximal Throughput. As with the Channel Timecourse chart, this view makes it easy to visualize how RF interference affects different 802.11 channels over time.

Channel Heatmap Chart (Arrow #3):
Also known as a "waterfall" graph.  It is a 3-dimensional representation of the data, where channels are marked along the X-axis, the Y-axis is a time scale and indicates the last 60 scans or sweeps, and the "Z-axis" is the color scale.  Each horizontal line in the Heatmap chart displays the % Maximal Throughput (as a color) for each channel measured over the time period of one scan.  That is, with each scan or sweep a new row is added at the bottom of the Heatmap chart and it continues to scroll upward.  The color legend to the right shows that larger values for % Maximal Throughput will appear red and smaller values will appear blue.  In this example, we see that for channels 1 and 2 that shortly after the cordless phone was turned on then the color changed from red, to orange, to light blue and then dark blue, again indicating a drop in % Maximal Throughput.

Channel Differentials Chart (Arrow #4):
The gray bars are a snapshot of the % Maximal Throughput values when the program was first launched, the green bars are the current values, and the blue bars represent the difference.  For channels 1 and 2 you can see a big difference between the snapshot (taken when the program was launched) and the current values (since the cordless phone was turned on).  This display can be used to view small (or large) changes in the RF landscape over time. Here's how it works…  When the application is first launched then a scan is performed and stored as a 'snapshot' (the gray bars) — these are static and do not change.  A real-time measurement for each 802.11 channel is then displayed using green bars, and the differences between the 'snapshot' and current displayed using blue bars. Plotting the data in this way makes it easy to detect changes that occurred since the last 'snapshot'.

Channel Statistical Chart (Arrow #5):
Shows an averaged value of % Maximal Throughput for each channel since the program was first launched (the horizontal red bar), along with its associated standard deviation.  Again, you can see that for channels 1 and 2 their % Maximal Throughput values have dropped.  Also, the large spread in standard deviation indicates the throughput values for these two channels have not been stable and have been subject to a lot of variation.

Statistics Grid (Arrow #6):
For each channel, reports several properties of the % Maximal Throughput — the current value, an averaged value, a high and low value (obtained from the average and standard deviation), the standard deviation, and the elapsed time since this session began.  For channels 1 and 2 their current values are very small (e.g. around 1%) indicating interference from the cordless phone is nearly complete and throughput for these two channels can be expected to be almost zero.  The corresponding average % Maximal Throughput for these two channels takes into account measurements prior to when the phone was activated — hence the average is still around 70%, though lower than the other channels.  The High and Low values are roughly the Average +/- the standard deviation.  A larger and more readable version of the grid is shown below…

WifiEagle Grid Cordless Phone

WifiEagle Topographic Chart

Channel Topographic (Arrow #7):
Similar to a 3-D histogram, the topographic chart (above) shows how frequently certain % Maximal Throughput values occur for each channel.  The more frequently a particular value is measured for a channel, then the color gradually changes from blue, to green, to yellow and ultimately red.  Red values are ones that occur frequently, whereas blue values occur least frequently.  In this case, we see for channels 1 and 2 an preponderance of frequently occurring, low values — again, consistent with the other charts.  Furthermore, we see that for channel 13 there is a preponderance of frequently occurring high values of % Maximal Throughput.  This, along with the data as presented by the other charts, indicates the RF transmissions from the 2.4 GHz cordless phone does not impact channel 13.

And, last — but not least — below is an RF spectrum trace of the same cordless phone taken using the AirSleuth-Pro spectrum analyzer.  Though the data is very useful and certainly compliments WifiEagle, when you are working in 802.11's world of channels then it becomes more difficult to visualize how the RF data might impact 802.11 channels.  And even if you could, because the 802.11 standard is composed of numerous protocols that dictate how an 802.11 device behaves, there is no way to be certain how, or even if, the RF peaks you see in a spectrum trace will affect an 802.11 device.

Spectrum Trace Cordless Phone

For evaluation purposes feel free to download the software application. Without our wireless device the software runs in a fully functional ‘Demo mode’ using simulated data.


WifiEagle represents a new and innovative series of PC-based, WiFi diagnostic tools used for installing, troubleshooting and monitoring 802.11 wireless networks and provide unprecedented visibility into the performance of a wireless network.

System Requirements:

  • Laptop or desktop PC running Microsoft Windows XP Professional (SP3), Windows Vista or Windows 7 (32-bit or 64-bit) operating system
  • Microsoft .NET Framework version 3.5 (or later)
  • An available USB 2.0 port for interfacing with the wireless device
  • CPU: Intel Pentium 4, 1.2 GHz or faster
  • Memory: 2048 MB or greater
  • Hard Drive: 1000 MB free space or greater
  • Video: 32 MB video RAM
  • Display resolution: 1280×1024 or greater
  • Internet connection for software downloads and/or initial product activation codes